NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis.
نویسندگان
چکیده
Mutations in NIPA1 cause Hereditary Spastic Paraplegia type 6, a neurodegenerative disease characterized by an (upper) motor neuron phenotype. Deletions of NIPA1 have been associated with a higher susceptibility to amyotrophic lateral sclerosis (ALS). The exact role of genetic variation in NIPA1 in ALS susceptibility and disease course is, however, not known. We sequenced the entire coding sequence of NIPA1 and genotyped a polyalanine repeat located in the first exon of NIPA1. A total of 2292 ALS patients and 2777 controls from three independent European populations were included. We identified two sequence variants that have a potentially damaging effect on NIPA1 protein function. Both variants were identified in ALS patients; no damaging variants were found in controls. Secondly, we found a significant effect of 'long' polyalanine repeat alleles on disease susceptibility: odds ratio = 1.71, P = 1.6 × 10(-4). Our analyses also revealed a significant effect of 'long' alleles on patient survival [hazard ratio (HR) = 1.60, P = 4.2 × 10(-4)] and on the age at onset of symptoms (HR = 1.37, P = 4.6 × 10(-3)). In patients carrying 'long' alleles, median survival was 3 months shorter than patients with 'normal' genotypes and onset of symptoms occurred 3.6 years earlier. Our data show that NIPA1 polyalanine repeat expansions are a common risk factor for ALS and modulate disease course.
منابع مشابه
Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci
OBJECTIVE To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS). METHODS We assessed G4C2 repeat number in 28 genes near known ALS and frontotemporal dementia (FTD) loci by repeat-primed PCR coupled with fluorescent fragment analysis in 199 patients with ALS (17 familial, 182 sporadic) and 136 healthy cont...
متن کاملATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with unclear etiology. Recently, intermediate CAG repeat expansions in ATXN2, the gene responsible for spinocerebellar ataxia type 2 (SCA2), have been identified as a possible genetic risk factor for ALS. In this study, we analyzed the ATXN2 CAG repeat length in Chinese patients with ALS to evaluate the relationship betwe...
متن کاملC9orf72 hexanucleotide repeat expansion analysis in Chinese spastic paraplegia patients.
BACKGROUND Recently, a hexanucleotide repeat expansion in the C9orf72 gene has been identified to cause frontotemporal dementia, amyotrophic lateral sclerosis families and many other neurodegenerative diseases. Owing to the overlapping phenotypes among HSP, frontotemporal dementia and amyotrophic lateral sclerosis we hypothesized that C9orf72 expansions might be a genetic risk factor or modifie...
متن کاملAmyotrophic lateral sclerosis and spinocerebellar ataxia type 2 in a family with full CAG repeat expansions of ATXN2.
IMPORTANCE A family with coexistence of spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis (ALS) is described. OBSERVATIONS Intermediate or full CAG repeat expansions of ATXN2 are associated with ALS. However, no coexistence of spinocerebellar ataxia type 2 and ALS in a family has been reported in the literature.We describe a 47-year-old woman with an 11-year history of ataxia an...
متن کاملC9orf72 repeat expansions are a rare genetic cause of parkinsonism.
The recently identified C9orf72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. As several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson's disease or other forms of parkinsonism might carry pathogenic C9orf72 expansions. Therefore, we looked for C9orf72 repeat expansions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2012